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Abstract—This paper presents a GPU-based parallel 

implementation of a Discrete Element Method (DEM) 

algorithm. The technique is applied in the simulation of 

free-falling particles in a rectangular bed. The effects on 

computation time for different number of particles are 

compared for the cases of performing the calculations 

using the GPU and the CPU (Central Processing Unit). It 

is found that the GPU provides a subsequent speed-up as 

compared to the CPU as the number of particles is 

increased. 
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I.  INTRODUCTION  

The Discrete Element Method (DEM), developed by 
Cundall in 1971, is a computational tool which is used to 
compute the displacement of each individual element in a 
system of moving particles. The method takes into account the 
translational and rotational motions of the particles as well as 
the contact forces (collision, friction, etc.) between them by 
numerically solving the corresponding governing equations. 
Two distinct techniques have been proposed in literature to 
model the interaction between the particles in DEM: the soft-
sphere and hard-sphere approaches. The soft-sphere approach, 
developed by Cundall & Strack (1979), models a particle that 
can deform during collision while the hard-sphere approach, 
established by Hoomans et al. (1996), assumes that a particle is 
perfectly rigid. The hard-sphere approach treats solid collisions 
as binary and does not delve into the detailed dynamics of the 
inter-particle collisions (Singh, 2007). This method is generally 
deterministic; with the same initial conditions the same final 
result will be obtained. It is generally used to model dilute and 
energetic granular flows. The soft-sphere approach is more 
flexible, but is however more time consuming due to small 
time integration time steps (Wassgren, 2013). It assumes that 
the particles can overlap during collisions.  

Nowadays, DEM has become accepted as a powerful 
method to tackle problems involving the flow of granular and 
discontinuous materials in many fields, including process 
engineering, mining, chemical industry with particulate 
reaction engineering, storage of grain flows and geophysics. It 
is recognized as an effective method to study the fundamentals 
of granular materials. The particles may have different shape or 

size though the computation is not as straightforward as in the 
case of circular or spherical particles. There are many studies 
reported in literature which detailed examples of where DEM 
have been employed. They range from simple applications to 
more complex industrial processes such as hopper discharge 
(Langston et al., 1995, 1996 and 1997). For instance, Pinson 
(2005) and Zhou et al. (2005), demonstrated the application of 
DEM in industrial processes using only spherical particles. 
Other researchers have applied the method using elements of 
polygonal shape (Heuze et al., 1993; Kun & Herrmann, 1996; 
Bolander & Saito, 1997; Camborde et al., 2000; Prochazka, 
2004). However, large-scale DEM simulations are relatively 
computational intensive, which limits either the length of a 
simulation or the number of particles. This paper details the 
advantages of using the Graphical Processing Unit (GPU) to 
enhance a soft-sphere DEM code in view of scaling up the 
number of particles or length of the simulation. The paper is 
organized as follows: Section II provides an outline of the 
model and section III discusses briefly about the GPU 
architecture and how to run a code on it. Results obtained and 
analysis are presented in section IV while section V gives the 
conclusion of this work. 

II. DESCRIPTION OF THE MODEL 

A. The system considered  

Fig. 1 illustrates a schematic representation of the granular 

flow system studied in this work. It consists of a two-

dimensional rectangular bed of width W=0.2 m and complete 

height H=1.1 m.  

 

Figure 1.  Schematic of the granular flow system.   
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N particles are initially randomly placed at H1=0.2 m and 

above from the bottom wall. They are then allowed to fall 

freely under gravity. The particles are assumed to be spherical 

in shape (diameter dp=5 mm) and made up of plastic 

(density=1080 kg/m
3
). In short, a defined number of particles 

is randomly positioned in space and is allowed to fall freely in 

a rectangular bed. The particles are then expected to pile up in 

the bed after some time. 

 

B. Theoretical treatments of contacts 

Here, a dashpot-spring model is assumed for the contact 
between any two particles as well as between a particle and 
wall as illustrated in Fig. 2. A spring kn and a dashpot cn are 
included to control normal motion between the two particles 
while a spring ks and a coefficient of friction cs control the 
tangential motion.  

 

Figure 2.  Illustration of the dashpot-spring soft-sphere contact model 

(Morisson and Wu, 2007). (A) Particle-to-particle contact in the normal 
direction, (B) particle-to-particle contact in the tangent direction, (C) particle-

to-wall contact in the normal direction, (D) particle-to-wall contact in the 

tangential direction.   

C. The DEM algorithm 

In a DEM algorithm, particle trajectories are computed by 
considering the various forces acting on each particle. Let us 
consider a particle i with radius ri, mass mi and moment of 
inertia Ii. First, the number of nearest neighbor (  ) of particle i 
is calculated to evaluate the number of contact pairs so as to 
reduce the computational requirement for the simulation. That 
is only the nearest neighbors will interact with the particle i 
during a given time step. A particle j is assumed to be a nearest 
neighbor of particle i if the distance between their centers is 
less than 2.5ri (Singh, 2007). By then applying the laws of 
conservation of linear momentum and angular momentum to 
each particle with respect to its nearest neighbors and the wall 
boundaries the resultant force on each particle is obtained. 
These conservation laws are given as  
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where     and  ⃗⃗   are respectively the translational and angular 
velocities of particle  . The contact and damping forces are 
respectively given as 
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and 
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where     is the separation distance,       and  ⃗⃗     are 

respectively the relative linear velocity and relative angular 
velocity between particles i and j.  The contact forces are the 
forces that resist the inter-particle overlap due to collision. The 
term      in equation (1) is the gravitational force and       in 

equation (2) is the torque on particle i due to particle j. 

  

III. THE GRAPHICAL PROCESSING UNIT (GPU) 

In 2003, Moreland & Angel recognized the ability of the 
GPU in performing large amount of computation in parallel. 
They were able to demonstrate the speedup obtained by 
implementing the Fast Fourier Transform (FFT) on the GPU as 
compared to the CPU. Since then, various research papers have 
been published on the application of GPU in scientific 
computing (Adinetz & Berezin, 2006; Anderson et al., 2007, 
Polyakov et al., 2013). In this section, the structure of the GPU 
is briefly discussed as well as the CUDA programming model 
which details how computations can be transferred from the 
CPU to the GPU.   

 

A. Architecture 

The GPU architecture is composed of more ALU’s than a 
CPU on the same die space. As a result, they can do large 
amounts of mathematical calculations in a greater quantity 
compared to the CPU (Owens et al., 2008). Fig. 3 depicts the 
architecture of a modern GPU. All the cores are connected to a 
very high bandwidth memory bus which allows the full use of 
the parallel processors. The CUDA architecture allows the 
GPU to execute the device code without intervention of the 
CPU. The latter is free to perform its task while waiting for the 
GPU to finish executing the Kernel. Therefore the GPU is not 
limited by the speed of the CPU (Nolan, 2009). 

 

Figure 3.  Architecture of a modern GPU (Kirk et al., 2010). 

 

 



B. The CUDA programming model 

A CUDA program basically consists of parts that are 
executed on the host (CPU) and the device (GPU). Parts that 
show little or no parallelism are run on the CPU and parts that 
are rich in data parallelism are implemented on the GPU. The 
DEM algorithm employed in this work is coded in C++. 
Therefore, the programming for both the host code and the 
device code is in C++ with some keywords in the device code 
for indicating the special functions run by the GPU. The device 
code is called kernel. It generates a large number of threads to 
perform data parallelism. A typical CUDA program starts on 
the host which runs through the code. Before reaching a kernel, 
variables that will be used on the device are defined and 
memory is then allocated on the device. The host copies the 
variables to the device memory. The CUDA kernel is then 
launched. 

A large number of threads are then generated on the device; 
the kernel is executed in parallel and all the threads are 
terminated at the end. Then, execution resumes on the host 
which copies the results of the kernel back to the host memory. 
The memory allocation on the GPU is cleared and host code 
can resume (Sanders & Kandrot, 2011). The scheme is 
illustrated in Fig. 4: 

 

Figure 4.  CUDA program execution (Cooper, 2011). 

 

C. Optimization strategy 

Before attempting to parallelize a particular code it is 
important to identify the part(s) that takes the most of the CPU 
execution time. A sequential version of the DEM code was 
written in ANSI C and has proven to give reliable results 
(Chamroo, 2011). The code contains three main functions 
which are described in table 1.  

TABLE I.  NAME AND TASK PERFORMED BY THE MAIN FUNCTIONS IN 

THE CODE 

Function name Task performed 

force_calculation() 
This function calculates the forces between the 

particles and updates the positions of the 

particle. 

reset_calculation() 
This function keeps a record of the numbers of 
nearest neighbors of each particle before 

calculating the nearest neighbor once again. 

nearest_neighbour() 
This function calculates the number of nearest 
neighbors of each particle. 

 

By measuring the execution time of each function, the one 
which is the most computational intensive is identified. This 
function must be parallelized in order to obtain a good 
speedup. Fig. 5 shows the time taken for executing the three 
functions for 1 particle with different values of N. It can be 
deduced that nearest_neighbour() consumes most of the CPU 
execution time. Hence we will focus on the parallelization of 
this function using the GPU. 

 

Figure 5.  Execution time of each function for 1 particle on the CPU for 
different values of N. 

Fig. 6 depicts a task dependency graph of the function 
nearest_neighbour(). It can be observed that all tasks are done 
sequentially and no tasks are independent of each other. 
However, each tasks from 1 to 6 can be done simultaneously, 
that is one processor can consider particle i, another processor 
can consider particle i+1 and each can perform the tasks 1 to 6 
sequentially on the particle considered. Hence parallelization is 
achieved. 

 

Figure 6.  Task dependency graph of function nearest_neighbour(). 

CUDA allows the generation of large numbers of threads 
which are executed concurrently on the GPU. Since we are 
dealing with large number of particles, using the massively 
parallel architecture of the GPU using CUDA could help in 
enhancing the simulation. Hence, each thread can be assigned 
to work out the nearest neighbors for a particular particle i, 

 

 

 



where i is equal to the index of the particular thread. Since each 
thread has a unique index, the ‘for loop’ is efficiently 
parallelized. Furthermore i for each thread is incremented by 
the total number of threads launched to avoid redundant 
computation. To obtain a good speedup, the idea is to launch as 
much threads as possible to keep the GPU busy. 

IV. RESULTS AND ANALYSIS 

The code was run on a computer with the following 
specifications: Intel Core i5 running at 2.50GHz, 4GB RAM, 
Nvidia Geforce GT 525M with 1GB of memory. For the 
purpose of our simulations, 5000 particles are considered. Fig. 
7(a) shows the initial positions of the particles randomly 
arranged 0.2 m above the bottom wall of the bed. They are then 
allowed to fall under the action of gravity. It is expected that 
these particles will all fall at the same speed, rebound due to 
collisions and eventually pile up inside the bed after a certain 
time. The position of each particle was noted at 0.2 second time 
interval as shown in Figs. 7(b) to (h). An ordered arrangement 
slowly begins to form inside the bed. 

 

Figure 7.  DEM snapshots of 5000 falling particles at different times.  

As we have mentioned earlier, the nearest neighbor 
algorithm can be run in parallel by using threads. Each Nvidia 
graphic card has an upper limit concerning the number of 
threads that can be generated, depending on its compute 
capacity. The graphic card used in this work had a compute 
capacity of 2.1. As stated earlier, generating as much threads as 

possible is important in a CUDA program. However there 
exists a limit for the number of threads above which speedup is 
no longer obtained. Moreover choosing an appropriate number 
of threads allows maximum usage of the GPU. In term of 
portability, we should choose a number which is not too large 
so that it can run on older GPU that can support CUDA. The 
execution time of the algorithm for 1000 particles was 
measured with increasing number of threads. Fig. 8 shows the 
results obtained. 

 

 

Figure 8.  Execution time of function nearest_neighbour() on GPU applied 

to 1000 particle for different number of threads. 

We can observe a noticeable decrease in the execution time 
as the number of threads is increased. Above 800 threads, no 
significant decrease in execution time is obtained for each case. 
To evaluate the performance of the GPU implementation of the 
algorithm, it was tested with increasing number of particles. 
The CPU implementation was also tested in the same way for 
comparison with the GPU version. Fig. 9 compares the total 
execution time of the serial version and the parallel version for 
different values of NUM from 100 to 600. 

 

Figure 9.  Comparison of total execution of the DEM code on  

both the CPU and GPU for some values of N. 

For small number of particles (less than about 350), we see 
that the serial version is faster than the CUDA optimized 
program. This is due to the time for transferring data to and 
from the GPU being larger than actual execution of the 
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function on the GPU. However as the number of particles 
increases, the CUDA optimized version beats the serial 
version. 

V. CONCLUSIONS 

In this work, we explained how parallel computations using 
the Graphical Processing Unit (GPU) can enhance scientific 
computations. The simulation of falling particles in a 
rectangular bed using the soft-sphere DEM approach was 
considered. This algorithm is highly parallel. Codes for both a 
serial version (using CPU) and a CUDA version (using GPU) 
were written using C++. The execution time of the serial 
version was compared with the CUDA version and the latter 
proved to be significantly faster as the number of particles is 
increased. This demonstrates the high capability of enhancing a 
DEM code using GPU. 
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