Parallelization of a Discrete Element Method (DEM)
algorithm using the Graphical Processing Unit (GPU)

Mario Guillaume Cecile and Michel Roddy Lollchund”
Department of Physics, University of Mauritius
Réduit, Rep. of Mauritius
“r.lolichund@uom.ac.mu

Abstract—This paper presents a GPU-based parallel
implementation of a Discrete Element Method (DEM)
algorithm. The technique is applied in the simulation of
free-falling particles in a rectangular bed. The effects on
computation time for different number of particles are
compared for the cases of performing the calculations
using the GPU and the CPU (Central Processing Unit). It
is found that the GPU provides a subsequent speed-up as
compared to the CPU as the number of particles is
increased.

Keywords- Graphical Processing Unit (GPU); Discrete
Element Method (DEM); Rectangular bed; Free-Falling
Particles

l. INTRODUCTION

The Discrete Element Method (DEM), developed by
Cundall in 1971, is a computational tool which is used to
compute the displacement of each individual element in a
system of moving particles. The method takes into account the
translational and rotational motions of the particles as well as
the contact forces (collision, friction, etc.) between them by
numerically solving the corresponding governing equations.
Two distinct techniques have been proposed in literature to
model the interaction between the particles in DEM: the soft-
sphere and hard-sphere approaches. The soft-sphere approach,
developed by Cundall & Strack (1979), models a particle that
can deform during collision while the hard-sphere approach,
established by Hoomans et al. (1996), assumes that a particle is
perfectly rigid. The hard-sphere approach treats solid collisions
as binary and does not delve into the detailed dynamics of the
inter-particle collisions (Singh, 2007). This method is generally
deterministic; with the same initial conditions the same final
result will be obtained. It is generally used to model dilute and
energetic granular flows. The soft-sphere approach is more
flexible, but is however more time consuming due to small
time integration time steps (Wassgren, 2013). It assumes that
the particles can overlap during collisions.

Nowadays, DEM has become accepted as a powerful
method to tackle problems involving the flow of granular and
discontinuous materials in many fields, including process
engineering, mining, chemical industry with particulate
reaction engineering, storage of grain flows and geophysics. It
is recognized as an effective method to study the fundamentals
of granular materials. The particles may have different shape or

size though the computation is not as straightforward as in the
case of circular or spherical particles. There are many studies
reported in literature which detailed examples of where DEM
have been employed. They range from simple applications to
more complex industrial processes such as hopper discharge
(Langston et al., 1995, 1996 and 1997). For instance, Pinson
(2005) and Zhou et al. (2005), demonstrated the application of
DEM in industrial processes using only spherical particles.
Other researchers have applied the method using elements of
polygonal shape (Heuze et al., 1993; Kun & Herrmann, 1996;
Bolander & Saito, 1997; Camborde et al., 2000; Prochazka,
2004). However, large-scale DEM simulations are relatively
computational intensive, which limits either the length of a
simulation or the number of particles. This paper details the
advantages of using the Graphical Processing Unit (GPU) to
enhance a soft-sphere DEM code in view of scaling up the
number of particles or length of the simulation. The paper is
organized as follows: Section Il provides an outline of the
model and section Ill discusses briefly about the GPU
architecture and how to run a code on it. Results obtained and
analysis are presented in section IV while section V gives the
conclusion of this work.

Il.  DESCRIPTION OF THE MODEL

A. The system considered

Fig. 1 illustrates a schematic representation of the granular
flow system studied in this work. It consists of a two-
dimensional rectangular bed of width W=0.2 m and complete
height H=1.1 m.

N particles

1
1
>

wall

wall

wall
y

t,, D v—

Figure 1. Schematic of the granular flow system.



N particles are initially randomly placed at H;=0.2 m and
above from the bottom wall. They are then allowed to fall
freely under gravity. The particles are assumed to be spherical
in shape (diameter d,=5mm) and made up of plastic
(density=1080 kg/m?). In short, a defined number of particles
is randomly positioned in space and is allowed to fall freely in
a rectangular bed. The particles are then expected to pile up in
the bed after some time.

B. Theoretical treatments of contacts

Here, a dashpot-spring model is assumed for the contact
between any two particles as well as between a particle and
wall as illustrated in Fig. 2. A spring k, and a dashpot c, are
included to control normal motion between the two particles
while a spring ks and a coefficient of friction ¢, control the
tangential motion.

Figure 2. Illustration of the dashpot-spring soft-sphere contact model
(Morisson and Wu, 2007). (A) Particle-to-particle contact in the normal
direction, (B) particle-to-particle contact in the tangent direction, (C) particle-
to-wall contact in the normal direction, (D) particle-to-wall contact in the
tangential direction.

C. The DEM algorithm

In a DEM algorithm, particle trajectories are computed by
considering the various forces acting on each particle. Let us
consider a particle i with radius r;, mass m; and moment of
inertia I;. First, the number of nearest neighbor (M;) of particle i
is calculated to evaluate the number of contact pairs so as to
reduce the computational requirement for the simulation. That
is only the nearest neighbors will interact with the particle i
during a given time step. A particle j is assumed to be a nearest
neighbor of particle i if the distance between their centers is
less than 2.5r; (Singh, 2007). By then applying the laws of
conservation of linear momentum and angular momentum to
each particle with respect to its nearest neighbors and the wall
boundaries the resultant force on each particle is obtained.
These conservation laws are given as

d17' M; - - >
m; d_tl = Z}:ll (F;Ji,j + FDi'j) + m;g, (1)

dw; M; -

Li—=X;2 T )
where 7; and @; are respectively the translational and angular
velocities of particle i. The contact and damping forces are
respectively given as

-

_kn(si,jln - ksé‘i,jlS (3)

Cij

and
Fp,; = =Calyj| = Cstdijl (4)

where §&;; is the separation distance, ¥;; and @,;; are
respectively the relative linear velocity and relative angular
velocity between particles i and j. The contact forces are the
forces that resist the inter-particle overlap due to collision. The
term m; g in equation (1) is the gravitational force and 7; ; in
equation (2) is the torque on particle i due to particle j.

IIl.  THE GRAPHICAL PROCESSING UNIT (GPU)

In 2003, Moreland & Angel recognized the ability of the
GPU in performing large amount of computation in parallel.
They were able to demonstrate the speedup obtained by
implementing the Fast Fourier Transform (FFT) on the GPU as
compared to the CPU. Since then, various research papers have
been published on the application of GPU in scientific
computing (Adinetz & Berezin, 2006; Anderson et al., 2007,
Polyakov et al., 2013). In this section, the structure of the GPU
is briefly discussed as well as the CUDA programming model
which details how computations can be transferred from the
CPU to the GPU.

A. Architecture

The GPU architecture is composed of more ALU’s than a
CPU on the same die space. As a result, they can do large
amounts of mathematical calculations in a greater quantity
compared to the CPU (Owens et al., 2008). Fig. 3 depicts the
architecture of a modern GPU. All the cores are connected to a
very high bandwidth memory bus which allows the full use of
the parallel processors. The CUDA architecture allows the
GPU to execute the device code without intervention of the
CPU. The latter is free to perform its task while waiting for the
GPU to finish executing the Kernel. Therefore the GPU is not
limited by the speed of the CPU (Nolan, 2009).

Host

Input Assembler Setup / Rstr / ZCull

Vix Thread Issue Geom Thread Issue Pixel Thread Issue

Thread Processor

Figure 3. Architecture of a modern GPU (Kirk et al., 2010).



B. The CUDA programming model

A CUDA program basically consists of parts that are
executed on the host (CPU) and the device (GPU). Parts that
show little or no parallelism are run on the CPU and parts that
are rich in data parallelism are implemented on the GPU. The
DEM algorithm employed in this work is coded in C++.
Therefore, the programming for both the host code and the
device code is in C++ with some keywords in the device code
for indicating the special functions run by the GPU. The device
code is called kernel. It generates a large number of threads to
perform data parallelism. A typical CUDA program starts on
the host which runs through the code. Before reaching a kernel,
variables that will be used on the device are defined and
memory is then allocated on the device. The host copies the
variables to the device memory. The CUDA Kkernel is then
launched.

A large number of threads are then generated on the device;
the kernel is executed in parallel and all the threads are
terminated at the end. Then, execution resumes on the host
which copies the results of the kernel back to the host memory.
The memory allocation on the GPU is cleared and host code
can resume (Sanders & Kandrot, 2011). The scheme is
illustrated in Fig. 4:

Allocate and initialize
data on CPU
1
| Allocate data on GPU |
1

Transfer data from CPU
to GPU

!

| Run kernel |

]

Transfer data from GPU
to CPU

Figure 4. CUDA program execution (Cooper, 2011).

C. Optimization strategy

Before attempting to parallelize a particular code it is
important to identify the part(s) that takes the most of the CPU
execution time. A sequential version of the DEM code was
written in ANSI C and has proven to give reliable results
(Chamroo, 2011). The code contains three main functions
which are described in table 1.

TABLE I. NAME AND TASK PERFORMED BY THE MAIN FUNCTIONS IN

THE CODE

Function name Task performed

This function calculates the forces between the
particles and updates the positions of the
particle.

This function keeps a record of the numbers of
nearest neighbors of each particle before
calculating the nearest neighbor once again.
This function calculates the number of nearest
neighbors of each particle.

force_calculation()

reset_calculation()

nearest_neighbour()

By measuring the execution time of each function, the one
which is the most computational intensive is identified. This
function must be parallelized in order to obtain a good
speedup. Fig. 5 shows the time taken for executing the three
functions for 1 particle with different values of N. It can be
deduced that nearest_neighbour() consumes most of the CPU
execution time. Hence we will focus on the parallelization of
this function using the GPU.

0.9
Force_calculation()

0.8 reset_neighbours()
nearest_neighbour()

Time taken (s)

0.1

0 ' ' ' ' 0 1
1000 1500 2000 2500 3000 3500 4000 4500 5000
Value of NUM

Figure 5. Execution time of each function for 1 particle on the CPU for
different values of N.

Fig. 6 depicts a task dependency graph of the function
nearest_neighbour(). It can be observed that all tasks are done
sequentially and no tasks are independent of each other.
However, each tasks from 1 to 6 can be done simultaneously,
that is one processor can consider particle i, another processor
can consider particle i+1 and each can perform the tasks 1 to 6
sequentially on the particle considered. Hence parallelization is

achieved.
—v{ Task 1: Select a particle i in the system

Task 2: Select another particle j in the
system

No

Task 3: If particle j is not particle i

Yes

No | Task 4 : If particle j is within a certain
radius from particle i

Yes

Yes Task 5 : If the number of nearest

neighbour around particle i has reach 6

No

Task 6: in what quadrant around particle i
and at what angle is found the neighbour

Figure 6. Task dependency graph of function nearest_neighbour().

CUDA allows the generation of large numbers of threads
which are executed concurrently on the GPU. Since we are
dealing with large number of particles, using the massively
parallel architecture of the GPU using CUDA could help in
enhancing the simulation. Hence, each thread can be assigned
to work out the nearest neighbors for a particular particle i,



where i is equal to the index of the particular thread. Since each
thread has a unique index, the ‘for loop’ is efficiently
parallelized. Furthermore i for each thread is incremented by
the total number of threads launched to avoid redundant
computation. To obtain a good speedup, the idea is to launch as
much threads as possible to keep the GPU busy.

IV. RESULTS AND ANALYSIS

The code was run on a computer with the following
specifications: Intel Core i5 running at 2.50GHz, 4GB RAM,
Nvidia Geforce GT 525M with 1GB of memory. For the
purpose of our simulations, 5000 particles are considered. Fig.
7(a) shows the initial positions of the particles randomly
arranged 0.2 m above the bottom wall of the bed. They are then
allowed to fall under the action of gravity. It is expected that
these particles will all fall at the same speed, rebound due to
collisions and eventually pile up inside the bed after a certain
time. The position of each particle was noted at 0.2 second time
interval as shown in Figs. 7(b) to (h). An ordered arrangement
slowly begins to form inside the bed.

005 01 015 02

@0s

()06

(€)0.8s

(f)10s

(9)1.2s (h)1.4s

Figure 7. DEM snapshots of 5000 falling particles at different times.

As we have mentioned earlier, the nearest neighbor
algorithm can be run in parallel by using threads. Each Nvidia
graphic card has an upper limit concerning the number of
threads that can be generated, depending on its compute
capacity. The graphic card used in this work had a compute
capacity of 2.1. As stated earlier, generating as much threads as

possible is important in a CUDA program. However there
exists a limit for the number of threads above which speedup is
no longer obtained. Moreover choosing an appropriate number
of threads allows maximum usage of the GPU. In term of
portability, we should choose a number which is not too large
so that it can run on older GPU that can support CUDA. The
execution time of the algorithm for 1000 particles was
measured with increasing number of threads. Fig. 8 shows the
results obtained.

2500
2000 -

1500

taken (s)

ime

T

1000

500

il I L L L 1 L L L )
100 200 300 400 500 600 700 BOO 900 1000
Nurber of threads

Figure 8. Execution time of function nearest_neighbour() on GPU applied
to 1000 particle for different number of threads.

We can observe a noticeable decrease in the execution time
as the number of threads is increased. Above 800 threads, no
significant decrease in execution time is obtained for each case.
To evaluate the performance of the GPU implementation of the
algorithm, it was tested with increasing number of particles.
The CPU implementation was also tested in the same way for
comparison with the GPU version. Fig. 9 compares the total
execution time of the serial version and the parallel version for
different values of NUM from 100 to 600.

1200

I GPU time
I CPU time

1000 -

800

600 [~

Execution time (s)

400

200

100 200 300 400 500 600
Value of NUM

Figure 9. Comparison of total execution of the DEM code on
both the CPU and GPU for some values of N.

For small number of particles (less than about 350), we see
that the serial version is faster than the CUDA optimized
program. This is due to the time for transferring data to and
from the GPU being larger than actual execution of the



function on the GPU. However as the number of particles
increases, the CUDA optimized version beats the serial
version.

V.  CONCLUSIONS

In this work, we explained how parallel computations using
the Graphical Processing Unit (GPU) can enhance scientific
computations. The simulation of falling particles in a
rectangular bed using the soft-sphere DEM approach was
considered. This algorithm is highly parallel. Codes for both a
serial version (using CPU) and a CUDA version (using GPU)
were written using C++. The execution time of the serial
version was compared with the CUDA version and the latter
proved to be significantly faster as the number of particles is
increased. This demonstrates the high capability of enhancing a
DEM code using GPU.

REFERENCES

[1] Cundall P.A., Strack O. D. L. (1979), “A discrete numerical model for
granular assemblies”, Geotechnique Volume 29, Issue 1, 01 March
1979, pp. 47-65.

[2] Hoomans, B.P.B., Kuipers, J.A.M., Briels, W.J., Van Swaaij, W.P.M.,
(1996), “Discrete particle simulation of bubble and slug formation in a
two-dimensional gas-fluidised bed: a hard sphere approach”, chem..
Engng Sci., 51, 99-118

[3] Singh V., Gupta, G.S. and Sarkar, S., (2007), “Study of gas cavity size
hysteresis in a packed bed using DEM”, Chemical Engineering Science,
Vol. 62, No. 22, pp. 6102-6111.

[4] Wassgren, C. (2013), “DEM Modeling: Lecture 06 Introduction to Soft-
Particle DEM Normal Contact Force Models. Part | [online]”.
Available from:
http://pharmahub.org/resources/123/download/psl_purdue_dem_lectureO
6_no%rmalcontactforcemodels_parti.pdf [Accessed on 17-May-2014].

[5] Langston P. A., Tuzun U. and Heyes D. M., (1995), “Discrete element
simulations of granular flow in 2D and 3D hoppers: dependence of
discharge rate and wall stress on particle interactions”, Chemical
Engineering Science, 50, 6, 967 — 987.

[6] Langston P. A., Tuzun U. and Heyes D. M., (1996), “Distinct element
simulations of interstitial air effects in axially symmetric granular flows
in hoppers”, Chemical Engineering Science, 51, 3, 876 — 891.

[7] Langston P. A. and Tuzun U., (1997), “Continuous potential discrete
particle simulations of stress and velocity fields in hoppers: transition
from fluid to granular flow”, Chemical Engineering Science, 49, 8, 1259
—1275.

[8] Pinson, D, (2005). “Application of discrete particle simulation to flow in
a transfer  chute”,  Australian  Bulk Handling  Review,
February/March:77-80.

[9] Zhou Z., Zhu H., Yu A., Wright B., Pinson D. and Zulli P., (2005),

“Discrete particle simulation of solid flow in a model blast furnace”,
ISWJ International, 45, 12, 1828 — 1837.

[10] Heuze, F.E., Walton, O.R., Maddix, D.M., Shaffer, R.J., and Butkovich,
T.R., “Analysis of Explosions in Hard Rocks: The Power of Discrete
Element Modeling,” Comprehensive Rock Engineering - Analysis and
Design Methods, Vol. 2, 1993, pp. 387-413.

[11] Kun F., Herrmann H.J., “A study of fragmentation processes using a
discrete element method”, Comp. Meth. in Appl. Mech. and Eng., 138,
3-18 (1996)

[12] Bolander, J.E. and Saito, S., “Discrete Modeling of Short-Fiber
Reinforcement in Cementitious Composites,” Advanced Cement Based
Materials, Vol. 6, 1997, pp. 76-86.

[13] Camborde, F., Mariotti, C., and Donze, F.V., “Numerical Study of Rock
and Concrete Behavior by Discrete Element Modeling,” Computers and
Geotechnics, Vol. 27, 2000, pp. 225-247.

[14] Prochazka, P.P., “Application of Discrete Element Methods to Fracture
Mechanics of Rock Bursts,” Engineering Fracture Mechanics, Vol. 71,
2004, pp. 601-618.

[15] Morrison, D.J., Wu, W. (2007). “Experimental Validation of the
Discrete Element Method (DEM)”, Iron ore- proceedings -cd-rom
edition-; 341-352 iron ore conference, Iron ore, Austral-Asian Institute
for Mining & Metallurgy.

[16] Moreland, K. and Angel, E. (2003), “The FFT on a GPU”, Graphics
Hardware.

[17] Adinetz A.V., Berezin S.B. (2006), “Implementation Classical Ray
tracing on GPU-a case Study of GPU Programming”, International
Conference Graphicon, Novosibirk Akademgorodok, Russia.

[18] Anderson, A. G., lll, W. A. G. and Schroder, P. (2007), “Quantum
Monte Carlo on graphic processing units”, Computer Physics
Communications 177.

[19] Polyakov, T., Lyutyy, V., Denisov, S., Reva, V.V. and Hanggi, P.
(2013), “Large-scale ferrofluid simulations on graphics processing
units”, Computer Physics Communications 184.

[20] Owens, J. D., Houston, M., Luebke, D., Green, S., Stone, J. E. and
Phillips, J. C. (2008), “Graphics Processing Units powerful,
programmable, and highly parallel are increasingly targeting general-
purpose computing applications.”, Proceedings of the IEEE 96.

[21] Nolan, G. (2009), “Improving the k-Nearest Neighbour Algorithm with
CUDA”, Technical report, The University of Western Australia.

[22] Kirk, D. B., Mei, W. and Hwu, W. (2010), “Programming massively
parallel processors hands- on approach”, Morgan Kaufmann, 30
corporate drive, suite 100, MA 01803, Burlington, USA.

[23] Sanders, J. and Kandrot, E. (2011), “CUDA by Example: An
introduction to General-Purpose GPU programming”, Addison-Wesley.

[24] Cooper, C. (2011), “GPU Computing with CUDA Lecture 1:
Introduction [online]”. Available from:
http://www.bu.edu/pasi/files/2011/07/Lecturel.pdf [Accessed on 20-
February-2014].

[25] Chamroo, S. (2011), “Experimental and Numerical investigation of
granular flow in a packed bed”, Technical report, University of
Mauritius.



